27 enero, 2022

, ,

La proteína ‘Spike’ de la variante ómicron

La tercera ola en el Perú ha superado con creces el número de infectados de las dos anteriores juntas. Más que una ola nos topamos con una pared. La responsable es la variante ómicron que fue reportada por primera vez en Sudáfrica hace solo dos meses. El número fallecidos aumenta, pero no en la misma proporción al número de infectados gracias a las vacunas. Solo miren las gráficas publicadas por Rodrigo Parra en su Twitter. Pero no nos confiemos, el número de hospitalizados (incluyendo niños) y pacientes en UCI aumentan y están cerca de saturar nuestro precario sistema de salud.

¿En qué radica el éxito de la variante ómicron? Un estudio publicado en Science muestra, con lujo de detalles, los cambios que ha sufrido la proteína ‘Spike’ —la que usa el SARS-CoV-2 para infectar las células humanas a través del receptor ACE2— gracias a las mutaciones que ha adquirido. Los investigadores emplearon la criomicroscopía electrónica. Esta técnica permite analizar la estructura tridimensional de las proteínas y componentes celulares.

En realidad la proteína ‘Spike’ está formada por tres proteínas idénticas o protómeros (imagen A en color morado). Técnicamente es un homotrímero. Además, cada proteína tiene dos partes o subunidades: la S1, que es la que se une al receptor ACE2 de las células humanas, y la S2, que es la que permite la fusión del virus con la célula humana para infectarla. La unión entre el receptor ACE2 (en color celeste en las imágenes A y B) y la proteína ‘Spike’ se da en un lugar particular de la S1 conocida como dominio RBD (imagen B).


La variante ómicron presenta 37 mutaciones en la proteína ‘Spike’. Una mutación es un cambio en la secuencia genética que codifica cada uno de los aminoácidos que conforman una proteína. El cambio de un solo aminoácido puede modificar la estructura de la proteína, su interacción con otras proteínas o componentes celulares o inactivarlas. Cuando esto ocurre, el virus puede perder su capacidad de infectar y desaparece. A veces una mutación pasa desapercibida porque no cambia ningún aminoácido o lo hace por otro que tiene las mismas propiedades fisicoquímicas. Pero ocurren casos en que estas mutaciones le dan una ventaja al virus. 


Los científicos observaron que 15 de las 37 mutaciones se hallaban en el dominio RBD, el cual es clave para la infección del virus y que es el objetivo de los anticuerpos neutralizantes (que bloquean su interacción con el receptor ACE2) generados por las vacunas. 

La interacción entre dos proteínas (como ‘Spike’ y ACE2) es compleja. Se basa en fuerzas electrostáticas (como la de los imanes) que se pegan o repelen de acuerdo con las cargas de los aminoácidos. El cambio de un aminoácido por otro puede modificar la estructura de la proteína (incluso ligeramente), afectando su interacción con otras. Imaginen 15 modificaciones solo en el dominio RBD. 

Lo que mostraron los análisis de criomicroscopía electrónica fue que, si bien habían cambios que afectaban la eficiencia de la interacción de ‘Spike’ y ACE2, habían otros que la restituían, evitando que ómicron pierda su capacidad de infectar las células humanas. Es decir, algunas de estas mutaciones, por sí solas, serían perjudiciales para el virus, pero cuando actúan en conjunto le confieren ventajas. En este caso, también les permite evadir mejor los anticuerpos neutralizantes. Esta es la razón de por qué tantas personas, incluyendo vacunados, se están infectando.


Lo que falta saber es ¿cómo surgió esta variante? Los científicos piensan que este virus pudo haber surgido en una persona con el sistema inmunológico comprometido (como un paciente de VIH, cáncer o transplante). El virus vivió de forma prolongada en esta persona, multiplicándose y generando nuevas mutaciones. Un laboratorio viviente. Esto también explicaría por qué no provoca síntomas tan fuertes como otras variantes. De haberlo hecho, su hospedero carente de defensas hubiera muerto.

Mientras hayan personas no vacunadas, muchas por falta de acceso (como en los países africanos) y otras por creer en las teorías de los antivacunas, el virus seguirá teniendo chances de evolucionar y generar nuevas variantes. No dejemos a la suerte la aparición de un “nuevo ómicron”, pero más peligroso.

Referencia e imágenes:

Mannar, D., et al. (2022). SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein–ACE2 complex. Science. DOI 10.1126/science.abn7760

24 enero, 2022

, , ,

¿Cómo eran los primeros tomates que llegaron a Europa?

Las primeras exploraciones europeas al continente americano, allá por inicios del siglo XVI, trajeron consigo muchas riquezas, especialmente, plantas que eran cultivas y consumidas al otro lado del mundo. Una de ellas fue el tomate. Hoy es la hortaliza más cultivada en el mundo. Anualmente se producen unas 180 millones de toneladas en 4.85 millones de hectáreas.

Los tomates de hoy no se parecen ni saben como los que llegaron a Europa hace 500 años. Esto se debe a que la selección y mejora genética, que se ha dado por décadas, se orientó hacia la obtención de frutos más redondos, uniformes y resistentes, que duren más en los anaqueles de los supermercados y resistan el aplastamiento. La consecuencia fue que, en el proceso, se perdieron aquellos genes y alelos que codifican mayores niveles de azúcares y compuestos volátiles, que son claves en el sabor de este fruto.

Con el fin de saber la apariencia que tenían los primeros tomates que llegaron a Europa, un grupo de investigadores neerlandeses recopiló información de herbarios, publicaciones e ilustraciones del siglo XVI. De acuerdo con el estudio publicado en PeerJ la primera descripción del tomate la hizo el naturalista italiano Pietro Andrea Matthioli, allá por 1544. Asimismo, a inicios la década de 1550, aparecieron las primeras ilustraciones de los tomates.

Las ilustraciones muestran tomates con una gran variedad de formas (alargadas y rechonchas, otras con surcos similares a calabazas) y colores (rojos, naranjas y amarillos). Esto explica su nombre italiano: pomo d’oro (manzana dorada).

Sin embargo, no se pudo determinar la procedencia ni el año exacto en el que llegaron los primeros tomates a Europa. Para acercarse a esta respuesta, los investigadores lograron aislar y analizar una pequeña porción de ADN de una muestra herborizada de tomate, que fue colectada por Francesco Petrollini en 1558, y que se conserva en el Herbario En Tibi.

Si bien solo se secuenció el 2 % del genoma de este tomate herborizado, se pudo comparar las secuencias con otras depositadas en el GenBank. El árbol filogenético muestra una relación cercana con tres variedades locales mexicanas y dos accesiones procedentes de Perú. 

La evidencia histórica apunta a que los tomates llegaron a Europa de Mesoamérica. No obstante, hoy se sabe que en el Perú también existían formas semidomesticadas y primitivas del tomate moderno, que posiblemente eran manejadas y consumidas por las poblaciones locales, pero que en algún momento de la historia se perdieron ya que se desconocen nombres del tomate en lenguas nativas andinas y amazónicas.

29 octubre, 2021

,

El reto que plantea el aumento de la demanda de alimentos

China, con sus ~1400 millones de habitantes, ha experimentado un notable desarrollo social y económico en las últimas décadas. Hoy es la segunda economía más grande del mundo. Pero hay algo en los que pocos caen en cuenta: su gran demanda de alimentos, la cual depende cada vez más de las importaciones.

Entre 2010 y 2018, el valor de las importaciones de productos agrícolas de China aumentó en 78 %. La consecuencia es una mayor presión ambiental en los países exportadores, como Brasil. El país sudamericano es el principal proveedor de soya del gigante asiático. Se estima que el 43 % de las emisiones de gases de efecto invernadero (GEI) asociado a la deforestación para el cultivo de soya se debe a las importaciones chinas de este cultivo.

Ahora imaginen lo que ocurrirá en 2050 si las tendencias se mantienen. Un estudio publicado en la revista Nature Sustainability evaluó el impacto ambiental que generará China en sus socios comerciales debido al aumento en la demanda de alimentos. El análisis se enfocó en cuatro componentes: el uso de las tierras agrícolas (para la producción de granos y pastos), las emisiones de GEI asociadas a la agricultura, el uso de fertilizantes nitrogenados sintéticos y el uso de agua para riego. Los siguientes gráficos resumen los hallazgos.

Agricultura industrial o agroecología

De acuerdo con el estudio, las importaciones chinas representaron el 35 % del comercio mundial de soya en 2010 (unas 45 millones de toneladas, Mt). Para el 2050 se prevé que este porcentaje alcance el 46 % (unas 126 Mt). ¿De dónde creen que saldrá toda esa soya?

Aunque a muchos no les guste —especialmente a los grupos ecologistas— se requiere de una agricultura industrial para cubrir esta demanda. Esto implica el uso de semillas mejoradas (híbridas, transgénicas, etc.), maquinaria agrícola y agroquímicos para obtener altos rendimientos (cantidad producida por área de cultivo). De no ser por este tipo de producción intensiva se requeriría de más áreas agrícolas para producir la misma cantidad de soya. Esto se traduciría en una mayor deforestación y reducción de hábitats naturales. Sin embargo, este tipo de agricultura tiene un costo ambiental muy alto.

En nuestros días, la agricultura industrial es un mal necesario. No podemos desprendernos de ella sin afectar la disponibilidad, asequibilidad y accesibilidad de alimentos. Algunas personas creen que la solución está en la agroecología (no confundirla con agricultura ecológica) que, de acuerdo con la FAO, se basa en diez principios que devienen en una gama de prácticas agrícolas y ganaderas sostenibles.



El problema radica cuando se tiene una visión esencialista de la agroecología, que rechaza frontalmente la biotecnología, la utilización de paquetes tecnológicos o la intensificación productiva. Esta visión es compartida por muchas organizaciones ecologistas, de agricultores y productores orgánicos, quienes usan la agroecología como un arma ideológica para luchar contra el modelo agroindustrial en vez de buscar la preservación de los ecosistemas y la sostenibilidad ambiental, económica y social.

Enfoque sistémico

Satisfacer la creciente demanda de alimentos y lograr sostenibilidad de la producción agraria, es uno de los mayores desafíos de las próximas décadas. Sin dudas hay que cambiar los patrones de consumo, por ejemplo, reduciendo el consumo de carnes rojas. Pero también debemos llevar la ciencia y la tecnología al campo, de la mano con los agricultores, para producir más con menos recursos.

Para lograr esto se debe tener una visión pragmática de la agroecología, que busque la conservación de la biodiversidad y la sostenibilidad ambiental, con independencia de que se basen o no en paquetes tecnológicos, incorporando los avances de la biotecnología (como la edición genética) y sin demonizar el papel de la industria. Es decir, una agroecología que no mire las herramientas del pasado sino las del futuro. Lamentablemente, la discusión sobre la agricultura se ha politizado, donde solo priman las representaciones particulares y selectivas de la realidad.

De acuerdo con el profesor Ken Giller, de la Universidad de Waheningen en Países Bajos, no existen enfoques universales ni soluciones únicas, tal como proponen los acérrimos defensores de la agroecología o de la agricultura moderna. Las condiciones locales que enfrentan los agricultores son muy variables. Se requiere un enfoque de sistemas que considere el clima, los factores biológicos (plagas, enfermedades, etc.), la gestión del suelo y del agua, las realidades ecológicas, sociales y económicas, etc.

La agricultura industrial puede adoptar varios principios de la agroecología, como la rotación de cultivos (para recuperar los nutrientes del suelo) y los cultivos de cobertura (para reducir el uso de herbicidas). Y la agroecología puede adoptar herramientas biotecnológicas para facilitar el manejo de plagas y evitar pérdidas por sequías o heladas. Lo que no podemos hacer es restringir opciones a los agricultores basados en prejuicios o miedos carentes de sustento científico. La crisis climática nos obliga a echar mano a todas las herramientas que tenemos a la mano.

29 septiembre, 2021

, ,

Desaparece linaje de gripe por la COVID-19

Las medidas aplicadas para frenar la transmisión de la COVID-19 —como la distancia social y el uso de mascarillas— también permitió reducir los casos de gripe o influenza. Esta enfermedad respiratoria también es causada por virus, que se pueden agrupar en cuatro tipos: A, B, C y D. Los dos primeros son de importancia para la salud pública. Por ello, la vacuna tetravalente ha sido diseñada para brindar protección contra dos subtipos de gripe A (H1N1 y H3N2) y dos linajes de gripe B (Victoria y Yamagata).

Con la reducción de casos de gripe, el virus tiene menos posibilidades de adquirir mutaciones ventajosas y evolucionar. Además, las variantes menos frecuentes tienden a desaparecer al reducir sus chances de encontrar nuevos hospederos. Esto impacta enormemente en su diversidad genética, tal como se ha visto durante la pandemia.

Reducción de la diversidad genética de los virus de la gripe. Fuente: Koutsakos et al. (2021).

Las infecciones provocadas por los virus del tipo B son responsables de la cuarta parte de los casos anuales de gripe. Sin embargo, a diferencia de los virus del tipo A, no se conoce un reservorio animal: solo se transmite entre humanos. Esto constituye una desventaja para el virus porque, si no puede conseguir nuevos hospederos, se extingue. Y esto es lo que pudo haber ocurrido con el linaje B/Yamagata.

De acuerdo con un reporte publicado esta semana en Nature Reviews Microbiology desde marzo de 2020 no se han aislado ni secuenciado virus del linaje B/Yamagata. Lo que no se sabe es si realmente este linaje se ha extinguido o simplemente está "escondido" porque los virus del tipo B suelen entrar en un estado de dormancia durante largos periodos de tiempo. Se requiere un muestreo y la secuenciación más exhaustivo para poder distinguir con certeza entre la falta de detección y la verdadera extinción.

Número de secuencias depositadas en GISAID de los cuatro subtipos de virus de la gripe. Fuente: Koutsakos et al. (2021).

La posible extinción del linaje B/Yamagata abre la posibilidad de aumentar el número de dosis disponibles de vacunas para su distribución mundial al pasar de una vacuna tetravalente a una trivalente. También se podría mejorar el nivel de protección de la vacuna tetravalente al incluir otro subclado de la gripe A(H3N2) que difiere sustancialmente del subclado empleado en las vacunas actuales, aunque requeriría de ensayos clínicos adicionales.

25 agosto, 2021

,

La manifestación poco conocida de la tenia solitaria

En las profundidades del intestino delgado puede habitar un extraño huésped. Parece un fetuchini tan largo como una anaconda, pero dividido en decenas de pequeños segmentos llamados proglótides. Vive anclado a la pared intestinal por unos espeluznantes ganchos y ventosas que tiene en la cabeza (si así se le puede llamar a eso). No tiene boca porque se alimenta a través de la piel. Es la famosa tenia solitaria.

Escólex de Taenia solium con cuatro ventosas y rostelo con ganchos. Fuente: CDC.

Le llaman solitaria porque no necesita de una compañera (o compañero) para poder formar una familia. Son hermafroditas. Cada proglótido maduro tiene su propio suministro de óvulos y esperma, capaces de producir unos 60 000 huevos muy resistentes que son liberados a través de nuestras heces. Al menos seis segmentos llenos de huevos son liberados cada día por una persona infectada.

Cuando los cerdos comen alimentos contaminados con heces humanas, común en algunas zonas de la sierra y selva del país, pueden estar ingiriendo los huevos de la tenia. Una vez dentro, el embrión es liberado del huevo y atraviesa la pared del intestino, alcanzando el torrente sanguíneo. A través de él viaja hacia los tejidos musculares donde forma un quiste apenas visible llamado cisticerco.

Si analizamos el cisticerco bajo un microscopio veremos a la larva con la espeluznante cabeza completamente ensamblada. Ya está preparada para que, una vez ingrese al cuerpo humano a través de un plato de chicharrón o un asado de cerdo mal cocido, se adhiera rápidamente a nuestros intestinos donde alcanza su madurez y reincida su ciclo de vida.

Tener una enorme solitaria en el intestino puede ser algo molesto, pero no es lo peor que nos puede ocurrir. A veces, lo que ingerimos no son los cisticercos sino los mismos huevecillos. Es entonces cuando la tenia solitaria nos trata como si fuéramos unos cerdos...

§§§

Un día llega al servicio de emergencia del hospital Guillermo Almenara, en La Victoria, un anciano de 82 años, natural de Huancayo, que presentaba deterioro en sus facultades cognitivas. Cualquiera pensaría que esto se debía a su avanzada edad. Pero lo que más preocupó a los médicos fueron las convulsiones, los ataques epilépticos, la desorientación y la pérdida de la fuerza motora en la parte derecha del cuerpo. No tenía fiebre y el resto de sus signos vitales parecían normales. Sin embargo, notaron la presencia de unos pequeños bultos bajo la piel, cerca al tronco y las extremidades. Una prueba de western blot confirmó que el paciente tenía cisticercosis.

¿Serían estos parásitos los que le provocaban los daños neurológicos al anciano? Los médicos mandaron al paciente a sacarse una tomografía y una resonancia magnética cerebral para ver si habían quistes en el encéfalo (neurocisticercosis) y esto fue lo que encontraron:

Resonancia magnética nuclear cerebral. A) corte axial y B) corte coronal del cerebro. Fuente: Maquera-Afaray et al. (2014) 

La imagen es impactante. No hay que ser médico para ver claramente los quistes diseminados en ambos hemisferios del cerebro, la órbita ocular [Figura A], el tronco encefálico, el cerebelo y bajo la piel del cuello [Figura B]. En la imagen de la izquierda se ven los quistes oscuros y, en la derecha, brillantes.

Cuando las larvas alcanzan el cerebro forman quistes que pueden medir un centímetro de diámetro. El cerebro se transforma en una especie de queso suizo, provocando serios daños neurológicos en la persona, especialmente, ataques epilépticos.

La neurocisticercosis es bastante común en Latinoamérica, con al menos unos 400 000 infectados, de los cuales 30 000 estarían en Perú.

Pero lo más sorprendente de este caso no fueron los quistes en el cerebro, sino los que estaban diseminados por todo el cuerpo del anciano, comprometiendo los pulmones, el corazón, el hígado, el páncreas, la pelvis y las extremidades.

Resonancia magnética nuclear de tórax (izquierda) y abdomen (derecha). Las bolitas brillantes vienen a ser los quistes.

Resonancia magnética nuclear de pelvis. Corte tangencial (izquierda) y transversal (derecha).

Esta manifestación de la enfermedad llamada cisticersosis diseminada (CCD) es extremadamente rara. Solo un centenar de casos reportados en el mundo, la mayoría en la India donde es más común el tipo de cisticercosis subcutánea (quistes bajo la piel, por lo general, asintomáticos). En el Perú, este fue el primer caso documentado de CCD con extenso compromiso de diferentes órganos.

No obstante, a pesar que el anciano era prácticamente la nave nodriza de los parásitos, un tratamiento con albendazol y prednisona por dos semanas fue suficiente para que se recuperara. Lamentablemente, a los pocos meses de haber sido dado de alta fallece por una neumonía.

Referencia:

Maquera-Afaray J, Capaquira E, Conde L. Cisticercosis diseminada: reporte de un caso en PerúRev Peru Med Exp Salud Publica. 2014;31(2):370-4.

§§§

Si las imágenes presentadas te sorprendieron, mira esta otra de una resonancia magnética de cuerpo completo de un paciente mongol con CCD.

CCD en un paciente de Mongolia. Fuente: Soo Yong Park et al. (2011).

04 agosto, 2021

, ,

Virus protectores de orugas

Las larvas de lepidópteros —grupo taxonómico al que pertenecen las polillas y mariposas— no tienen una vida fácil. Por un lado, son infectadas por virus que controlan sus movimientos y las disuelven desde su interior; y, por otro, son usados como nidos y alimento de larvas de avispas parasitoides. Es cierto que algunas son plagas de diversos cultivos y no merecen nuestra mayor consideración, como es el caso del gusano cogollero (Spodoptera frugiperda); pero otras se convierten en bellas mariposas que cumplen roles importantes en el ecosistema. 

Esta competencia entre virus y avispas parasitoides por someter a las pobres orugas generó un interesante proceso evolutivo que fue descrito en un reciente estudio publicado en Science. Las orugas infectadas por ciertos tipos de virus producían unas proteínas conocidas como factores de muerte de parasitoides (PKF, por sus siglas en inglés), que son tóxicas para las larvas de las avispas que se desarrollan en su interior. Es decir, las orugas se vuelven resistentes a sus avispas parasitoides.

Las PKF ya eran conocidas hace varias décadas, pero no se sabía de dónde procedían. Al analizar los genes que las codifican observaron que estaban presentes en diferentes grupos de virus, como los baculovirus, ascovirus y entomopoxvirus; y también en el genoma de algunos lepidópteros. Esto indicaba que hubo una transferencia de genes entre los virus y los insectos. Es decir, eran "transgénicos naturales". De esta forma, las orugas podrían resistir el ataque de las avispas parasitoides sin la necesidad de estar infectadas por los virus, lo que explicaría por qué algunas plagas adquieren resistencia a sus controladores biológicos.

Árbol filogenético de las secuencias de los PKF. Fuente: Gasmi et al. (2021).

Pero la historia no termina aquí. Resulta que hay avispas parasitoides como la Meteorus pulchricornis que, al poner sus huevecillos en las orugas, les transmiten un ascovirus que inactiva el efecto tóxico de las PKF. De esta manera, sus larvas pueden sobrevivir dentro de su hospedero que en teoría es resistente. Sin embargo, aún no está claro por qué algunos virus tienen los genes para las PKF y otros no. Tampoco se sabe si todas las PKF funcionan de la misma manera o si hay otros genes que juegan un papel protector similar.

01 agosto, 2021

,

Frijoles transgénicos desarrollados en Brasil llegan a los mercados

En septiembre de 2011, la Comisión Técnica Nacional de Bioseguridad de Brasil aprobó el cultivo de un frijol genéticamente modificado desarrollado por la Empresa Brasileña de Investigación Agropecuaria (Embrapa). La decisión marcó un hito en el desarrollo biotecnológico de la región. Era el primer producto transgénico con fines comerciales desarrollado íntegramente por una institución pública (aunque parte del financiamiento derivaron de las regalías obtenidas por Monsanto).

La característica de este frijol es su resistencia contra el virus del mosaico dorado (BGMV) transmitido por la mosca blanca (Bemisia tabaci). Este virus provoca una reducción del tamaño de las plantas, el aborto de flores y la deformación de vainas y granos, que pueden llevar a la pérdida total del cultivo cuando la infección es temprana. Controlar el vector es complicado. Requiere de una combinación de prácticas culturales (regular fechas de siembra, utilizar cercos vivos, eliminar residuos de cosecha previa, entre otros) y aplicación de insecticidas (los neonicotinoides son los más efectivos, pero perjudiciales para insectos benéficos). Gracias a la ingeniería genética, el frijol desarrollado por Embrapa puede defenderse por sí mismo.

Síntomas del BGMV. Fuente: Embrapa.

Silenciar genes

En 1977 Jean y Peter Medawar hicieron la mejor descripción de lo que es un virus: “malas noticias envueltas en proteína“. Las malas noticias están escritas en formato ARN (como en los coronavirus) o ADN (como en el BGMV). ¿Cuál es el mensaje? Instrucciones para fabricar más virus, es decir, los genes necesarios para hacer muchas copias del mensaje y para producir las proteínas que protegerán el mensaje. Para ejecutar esta tarea, los virus requieren de insumos y herramientas. Esto lo consiguen invadiendo inocentes células.

¿Cómo evitarlo? Podemos impedir la entrega del mensaje o bloquear la lectura del mensaje. Nuestro sistema inmune hace lo primero. Fabrica anticuerpos que reconocen las proteínas del virus y facilitan su destrucción antes que infecten las células. Las plantas no cuentan con ello, pero ¿qué hay de la segunda estrategia?

En 2006, los científicos estadounidenses Andrew Fire y Craig Mello recibieron el Premio Nobel de Medicina por descubrir un mecanismo que usan las células eucariotas (como de las plantas) para evitar que un gen se convierta en proteína.

Recordemos que los genes están escritos en formato ADN, conformado por dos hebras complementarias (A con T y C con G). Sin embargo, los ribosomas solo leen el formato ARN que solo tiene una hebra. Así que el gen de ADN primero debe transcribirse a ARN. A este intermediario se le conoce como ARN mensajero (ARNm).

Fire y Mello observaron pequeñas moléculas de ARN con secuencias complementarias al ARNm de ciertos genes, que se pegaban a estos formando un ARN de doble hebra (ARNdh). Los ARNdh son destruidos por las células antes que se traduzcan en proteínas. A este mecanismo de regulación de la expresión genética se le conoce como silenciamiento de genes por ARN de interferencia (ARNi).

Silenciamiento de genes por ARN de interferencia. Fuente: Sylentis.

Resistencia al BGMV

Los investigadores de Embrapa aprovecharon esta estrategia para bloquear el mensaje del BGMV cuando infectara el frijol. A partir de la secuencia genética del virus, diseñaron un pequeño fragmento de ADN complementario al gen rep —que es indispensable para la replicación del virus— para generar un ARNi y silenciarlo. De esta manera, la planta no manifestaba los síntomas de la enfermedad. Era “inmune” al BGMV.

El frijol transgénico fue sometido a diversas pruebas. Observaron si el gen introducido era estable por varias generaciones. Determinaron el nivel de resistencia al virus. Analizaron su inocuidad y seguridad para el consumo humano. Evaluaron cualquier efecto no intencional sobre el ambiente y la biodiversidad. Con toda esta información elaboraron un expediente de 500 páginas donde demostraban la seguridad del producto, que fue evaluado y, finalmente, aprobado por la entidad reguladora en 2011.

Desarrollo de variedades comerciales

El hecho que una planta transgénica sea autorizada para ser cultivada, no significa necesariamente que esté lista para ser usada. Primero se debe desarrollar las variedades comerciales. Es decir, cruzar el frijol transgénico con cultivares de alto rendimiento y productividad, buena calidad del grano, adaptadas a los diferentes agroecosistemas y que son preferidas tanto por agricultores como por los consumidores locales.

Este proceso tomó varios años, hasta que en 2019 Embrapa lanza el primer cultivar transgénico llamado BRS FC401 RMD (Resistente ao Mosaico Dourado). Fue producto del cruzamiento entre el frijol transgénico —desarrollado en la variedad “Olathe Pinto”— con la variedad carioca BRS Pontal. Ambos son frijoles moteados o “pinto“, muy consumidos en Brasil. Embrapa también evalúa desarrollar otras variedades de frijol RMD, a parte del carioca. Se consideró un frijol negro RMD con fines de exportación, pero antes el evento transgénico debe estar autorizado para consumo humano en el país de destino.

A inicios de 2020, Embrapa otorgó a dos semilleristas locales 2000 Kg de semilla de frijol transgénico para que se encarguen de multiplicarlo y comercializarlo. Para la campaña 2020-2021 se produjeron 90 toneladas de semilla BRS FC401 RMD suficiente para cubrir unas 1500 hectáreas, de las casi tres millones que se siembran en Brasil. Todavía es poco, pero la adopción de una nueva variedad toma su tiempo, más aún si es transgénica porque dependerá de la aceptación por parte de los consumidores.

Frijol transgénico en tiendas

Han pasado más de quince años del día en que, en una placa Petri, unas células de frijol adoptaron un fragmento de ADN que les haría inmunes frente al virus del mosaico dorado. El frijol BRS FC401 RMD ya se encuentra en las tiendas, al menos, en Goiânia. Y, tal como exige la normativa brasileña, está etiquetado para que el consumidor pueda reconocerlo como transgénico (una T negra dentro de un triángulo amarillo) y decidir si comprarlo o no.


La biotecnología ofrece soluciones a problemas que aquejan a los agricultores. No son la panacea, pero sí una herramienta muy útil que, sumadas a otras como el manejo integrado de plagas o las mismas prácticas agroecológicas, pueden hacer que la agricultura sea mucho más sostenible y resiliente.

Los efectos del cambio climático en la agricultura ya los estamos sintiendo: sequías prolongadas, heladas frecuentes, inundaciones, presencia de plagas en nuevos nichos ecológicos, caída de rendimientos por altas temperaturas, etc. Requerimos cambios profundos en nuestro estilo de vida y patrones de consumo, pero también herramientas para adaptarnos rápidamente a estos cambios.

§§

Nota: Artículo publicado originalmente el 20 de julio de 2021 en Expresión Genética del diario El Comercio.