31 mayo, 2012

, , , ,

Un paso más hacia una vacuna contra la malaria

sporozoite

El desarrollo de vacunas contra la malaria que produzcan una fuerte y prolongada respuesta inmunogénica es un área de investigación importante en el mundo. Es que esta enfermedad afecta a más de 200 millones de personas en el mundo y cobrando más de 600 mil víctimas al año.

Investigadores del Centro Nacional de Biotecnología del CSIC en colaboración con la Johns Hopkins University de los EE.UU. han desarrollado un nuevo protocolo de vacunación que consigue en ratones eliminar la infección por Plasmodium, el parásito causante de la malaria. El estudio aparece publicado en el último número de The Journal of Immunology.

Gracias a una beca de la Fundación La Caixa, Aneesh Vijayan ha podido comprobar bajo la dirección del Dr. Mariano Esteban que la vacunación en dos fases consigue en ratones una protección completa frente al parásito Plasmodium yoelii. Según explica Esteban, “primero se inyecta una proteína quimérica (CS-14K) y dos semanas después se administra un virus atenuado (MVA-CS) que produce la proteína CS”.

La proteína circumesporozoito (CS) está presente en la superficie de los esporozoitos —una de las fases de desarrollo del Plasmodium— que es transmitido a los vertebrados a través de la saliva del mosquito. Se cree que esta proteína está comprometida con el proceso de invasión hepática.

El motivo de basar la vacuna en la proteína CS se debe a un trabajo realizado en África en 2008 en el que conseguían una protección del 50% durante el primer año. Los 15.450 niños de entre 5 y 17 meses de este ensayo clínico de fase III fueron vacunados con una combinación de la proteína CS fusionada con otra proteína del virus de la hepatitis B junto con el adyuvante ASO1.

La necesidad de una vacuna que proteja en mayor grado llevó al grupo de Esteban a probar con esta nueva aproximación de la cual el CSIC ha solicitado ya una patente. Aunque se ha demostrado sólo en ratones, Esteban piensa que este trabajo supone “un paso adelante hacia el desarrollo de una vacuna con alta eficacia frente a malaria con la ventaja de que no necesita la inclusión de un adyuvante”, la cual, con una tasa de infección de unos 225 millones de personas y alrededor de 1 millón de muertes anuales, es uno de los mayores problemas de salud pública actuales.

Fuente | CNB-CSIC.

30 mayo, 2012

, , , , ,

Regenerando tejidos y organismos a partir de una célula

Todos los seres vivos estamos compuestos por células, ya sea por una sola como es el caso de las bacterias, paramecios y amebas; o por miles de millones como en las plantas y animales. En estos últimos, cada célula que compone un individuo puede adquirir distintas formas y funciones especializadas, a pesar que todas compartan el mismo material genético y todas hayan sido originadas a partir de una única célula conocida como cigoto.

En los animales superiores como los mamíferos, el cigoto es una célula totipotente. Esto quiere decir que esta única célula tiene la capacidad de formar todos los diferentes tipos de células de las tres capas germinales de un organismo y, además, formar el saco vitelino, el cordón umbilical y la placenta.

Sin embargo, las de mayor interés para el mundo científico, especialmente para la biomedicina y la medicina regenerativa son las células pluripotentes. Estas células también tienen la capacidad de formar todos los tejidos de un individuo con excepción de la placenta y el saco vitelino, o sea, no pueden formar un ser humano completo desde cero.

La principal fuente de estas células son las células madre embrionarias (ESC), las cuales son obtenidas del blastocisto (una de las primeras etapas en el desarrollo de un humano). Esto quiere decir que para obtener estas células madre hay que destruir el embrión en formación y matar al futuro bebé. Es por esta razón que el trabajo con las células madre embrionarias genera dilemas éticos.

La solución a este dilema se obtuvo en el año 2006 [1], cuando científicos japoneses liderados por el Dr. Shinya Yamanaka, lograron convertir una célula diferenciada del fibroblasto del ratón en una célula madre pluripotente mediante un mecanismo de reprogramación celular. A estas células se las llamo células madre pluripotente inducidas (iPSC), las cuales tenían la capacidad —tal como una ESC— de formar cualquier tipo de tejido. Un año después, dos grupos de investigadores lograron obtener iPSC de humanos usando los mismos principios aplicados en ratones [2,3].



Sin embargo, a pesar que las dos son células madre, las iPSC tienen la desventaja de muchas veces no poder diferenciarse en cualquier tipo de célula y su capacidad de regeneración es más limitada comparado con las ESC. Este problema ha mantenido a los científicos ocupados durante los últimos años y ha retrasado el avance de la medicina regenerativa.

Los científicos no entendían a qué se debía ya que, tanto las ESC como las iPSC, tenían la misma información genética. La respuesta llegó hace unos meses, cuando se descubrió que la diferencia radicaba en la metilación de ciertas regiones del genoma de las iPSC que alteran la expresión de ciertos genes, afectando la diferenciación celular [4].

Otro problema de las iPSC es que, cuando las células diferenciadas son reprogramadas para tener una funcionalidad de célula madre, se le insertan factores de transcripción que, a la larga, no se llegan a inactivar y la célula empieza a dividirse sin control, generando tumores. Hace un año, investigadores del Departamento de Medicina de la Universidad de Pennsylvania desarrollaron una novedosa tecnología basada en pequeñas moléculas de ARN —de 18 a 20 pares de base— con la capacidad de regular la expresión de ciertos genes [5]. Estas moléculas conocidas como microARNs tenían la capacidad de reprogramar las células diferenciadas en células madre sin la necesidad de introducir factores de transcripción exógenos.

Pero, no basta solo con los factores de transcripción para reprogramar una célula o diferenciar una célula madre, las propiedades físicas del entorno (viscosidad, rigidez, elasticidad, etc.) juegan un papel muy importante en el desarrollo celular. El Dr. Penney Gilbert y sus colaboradores del Laboratorio Baxter descubrieron que los sustratos elásticos mejoraban la supervivencia y la capacidad regenerativa de las células madre musculares [6].

Gracias a estos descubrimientos ahora los científicos son capaces de regenerar ciertos órganos humanos. Dos grandes avances se han dado en los dos últimos años. El primero se dio a fines del 2010, cuando investigadores liderados por el Dr. James Wells del Centro Médico del Hospital de Niños de Cincinnati, lograron reconstruir el tejido intestinal humano usando un tipo de células madre embrionarias, imitando los estadíos de su desarrollo y formando un tejido tridimensional in vitro [7]. El segundo se dio en abril del 2011, cuando investigadores japoneses liderados por el Dr. Mototsugu Eiraku, lograron desarrollar uno de los tejidos más complejos de los humanos —la retinain vitro, usando células madre embrionarias [8].

Los animales adultos generalmente no poseen células pluripotentes. Aunque, de manera natural, todos los animales tenemos células madre en nuestro cuerpo, las cuales son las encargadas de regenerar nuestros tejidos que van envejeciendo y perdiéndose día a día. En total tenemos alrededor de 20 tipos difentes de células madre adultas las cuales ya no son totipotentes ni pluripotentes, sino más bien, multipotentes. El ejemplo más conocido son las células madre hematopoyéticas ubicadas en la médula osea, las cuales forman todas las células de la sangre (linfocitos, eritrocitos, plaquetas, neutrófilos, macrófagos, etc.).

Pero, una cosa es regenerar un tejido y otra muy diferente es regenerar todo, o por lo menos, una gran parte de un organismo vivo. En el mundo natural vemos que muchos animales tienen la capacidad de regenerar ciertas partes de su cuerpo cuando son dañadas o perdidas a causa de un accidente o al huir de un depredador. Tal vez el caso más conocido sea el de las lagartijas, quienes tienen la capacidad de regenerar su cola si es que llegan a perderla. Pero, esto no es nada comparado con la capacidad regenerativa de las planarias.

A fines del siglo XIX, T. H. Morgan observó y estudio la capacidad regenerativa de estos gusanos planos, y determinó que podían regenerarse por completo a partir de un fragmento que correspondía a la 279ava parte de su cuerpo.

El secreto de estos fascinantes organismos son los neoblastos, un tipo de células con la capacidad de regenerar cualquier parte del cuerpo de una planaria, incluso la cabeza. El viernes pasado, científicos del Instituto Médico Howard Hughes lograron regenerar una planaria completa usando un sólo neoblasto [9]. Además, al estudiarlo de manera individual, descubrieron que los neoblastos se comportan como células pluripotentes, algo que no había sido reportado en animales adultos, anteriormente.

Los neoblastos podrían ayudar a entender los intrincados mecanismos genéticos envueltos en la regeneración de tejidos y órganos a partir de celulas madre, ya sea embrionarias o inducidas a pluripotencia. Imagínense algún día poder tener esa capacidad de trasplantar una célula madre a un paciente con un problema hepático, y después de unas semanas, su hígado sea regenerado y funcione correctamente. Los avances obtenidos en los últimos años nos permiten soñar con tener esta tecnología algún día, pero mientras los problemas éticos sigan rondando las investigaciones científicas, el tiempo de espera será mucho mayor.

Disclaimer: Entrada originalmente publicada el 15 de Mayo del 2011 a través de Ciencias.pe



Referencias:
  1. Yamanaka, S. & K. Takahashi. Cell doi: 10.1016/j.cell.2006.07.024 (2006).
  2. Thomson, J.A. et al. Science doi: 10.1126/science.1151526 (2007).
  3. Yamanaka, S. et al. Cell doi: 10.1016/j.cell.2007.11.019 (2007).
  4. Lister, R. et al. Nature doi: 10.1038/nature09798 (2011).
  5. Anokye-Danso, F. et al. Cell Stem Cell doi: 10.1016/j.stem.2011.03.001(2011).
  6. Gilbert, P. et al. Science doi: 10.1126/science.1191035 (2010).
  7. Spence, J. et al. Nature doi: 10.1038/nature09691 (2010).
  8. Eiraku, T. et al. Nature doi: 10.1038/nature09941 (2011).
  9. Wagner, D. et al. Science doi: 10.1126/science1203983 (2011).
Imagen | La cabeza de Einstein.

28 mayo, 2012

, ,

Revelan estructura de proteína clave en la unión del fago a la bacteria

Estudio puede contribuir con el desarrollo antibióticos basados en fagos.

fago_cola

Los bacteriófagos (fagos) son virus especializados en infectar bacterias para multiplicarse y diseminarse. Descubiertos hace más de 90 años, han jugado un rol importante en el desarrollo de la biotecnología. Fueron usados para controlar la disentería en los niños, incluso se llegaron a comercializar preparados basados en ellos para el tratamiento de otras infecciones. Sin embargo, el descubrimiento de la penicilina y otros antibióticos de amplio espectro hizo que la terapia basada en los fagos fuera abandonada allá por la década de 1940.

Pero ¿quién diría que la vida les daría una nueva oportunidad? La aparición de bacterias patógenas cada vez más resistentes a los antibióticos usados hoy en día ha provocado que los científicos busquen otras maneras de hacerles frente. Algunos de ellos están reevaluando el potencial de los fagos para el desarrollo de nuevas estrategias terapéuticas más efectivas.

Con el fin de entender el proceso de anclaje del fago a la bacteria, Carmela García-Doval y Mark van Raaij del Centro Nacional de Biotecnología del CSIC (España) han revelado la estructura de la proteína que forma la cola del fago T7. El estudio publicado hoy en PNAS muestra también la localización precisa de la posible región responsable del anclaje y sugiere que mutaciones a este nivel podrían cambiar la afinidad del fago hacia otras bacterias.

Estructura

El 95% de los fagos pertenecen al orden de los Caudovirales. Estos se caracterizan por tener una forma muy particular, similares a pequeñas sondas espaciales. Están formados por una cabeza hueca proteica de forma icosaédrica llamada cápside —que es donde se encuentra todo el material genético del virus—, y una cola que sirve para reconocer y unirse a la superficie de las bacterias.

Los fagos del tipo T7 tienen una cola con seis fibrillas unidas a su extremo. Cada una está formada por tres copias de la proteína gp17, que es la responsable del reconocimiento y unión del fago a la bacteria, en este caso, la Escherichia coli.

García-Doval & van Raaij purificaron y cristalizaron el extremo carboxil-terminal (o extremo final) de la proteína gp17 para poder determinar su conformación tridimensional a través de la difracción de rayos X. La técnica permitió obtener la estructura de dicho fragmento con una resolución de 0.2 nanómetros. En ella se pudo apreciar la formación de dos dominios: la pirámide triangular (inferior) y la punta globular (superior), ambos formados por estructuras del tipo beta láminas —que les dan gran estabilidad—, unidos a través de una cadena flexible de aminoácidos que podría ser fundamental en el proceso de infección.

Especificidad

La principal característica de los fagos es su especificidad por un tipo de bacteria. Esto es una ventaja al momento de desarrollar un antibiótico porque te aseguras que sólo la bacteria indeseada sea la eliminada. Este poder selectivo ha sido aprovechado también en la industria alimentaria para la tipificación, identificación e incluso eliminación de bacterias dañinas para la salud que podrían estar en los alimentos.

Gracias a la gran resolución obtenida por los investigadores del CSIC y la comparación con proteínas similares en especies como Yersinia pestis (responsable de la peste bubónica), se logró localizar regiones específicas en la punta globular que podrían ser responsables del anclaje del fago a la superficie de la bacteria. Mutaciones en estas regiones pueden afectar dicha unión, incluso cambiar su especificidad hacia otra especie de bacteria.

Los investigadores dicen que se necesitan más experimentos con versiones mutantes de la proteína gp17 para identificar los aminoácidos que confieren la especificidad por un tipo de bacteria. Asimismo, se requiere determinar la estructura de la unión de las fibras de la cola del fago con el lipopolisacárido de la bacteria, a través de una cocristalización, para confirmar si el punto de anclaje se da en la punta globular de la proteína.

Conocer a fondo esta proteína permitirá desarrollar versiones mutantes con una afinidad por bacterias patógenas humanas, las cuales podrán ser usadas como agentes terapéuticos. Este mismo de estudio puede ser aplicado a otros tipos de fagos, especialmente, aquellos que pueden infectar bacterias capaces de formar biopelículas —o algún otro tipo de estructura de resistencia— que las protegen del efecto de los antibióticos.



Referencia:

ResearchBlogging.orgGarcia-Doval, C., & Raaij, M.J.V. (2012). Structure of the receptor-binding carboxy-terminal domain of bacteriophage T7 tail fibers. Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1119719109

24 mayo, 2012

, ,

Somos un desierto

Es muy probable que todos hayan visto la popular imagen publicada hace unos días por la United States Geological Survey (USGS), donde se ve toda el agua de la Tierra agrupada en una esfera de 1385Km. Unos días más tarde salió una segunda imagen, un poco más abrumadora que la primera, porque en ella se incluye una esfera mucho más pequeña —de 273Km— que representa sólo el agua dulce (lagos, ríos, manantiales, aguas subterráneas, etc.) del planeta.


Siguiendo ese mismo estilo, esta vez le toco el turno a Europa, una de las lunas de Júpiter que se caracterizada por tener un vasto océano de agua congelada sobre su superficie. Usando los datos obtenidos por la sonda Galileo de la NASA entre los años 1995 y 2003, Kevin Hand del Jet Propulsion Laboratory de la NASA desarroló esta imagen:


Europa posee un océano congelado cubriendo toda su superficie. Se cree que bajo kilómetros de hielo exista un océano de agua líquida dada la presión y temperatura que ahí podría haber. Todo podría tener una profundidad promedio de entre 80 y 170Km. Usando un valor de 100Km para los cálculos, se obtuvo una esfera de 877Km de diámetro, que equivale a las 2/3 partes de toda el agua que hay en la Tierra, que en comparación con el tamaño de Europa, esta ocupa una gran proporción de su superficie.

La pregunta que se hacen muchos astrobiólogos es si bajo la capa de hielo de esta luna exista alguna forma de vida extraterrestre.

23 mayo, 2012

, ,

Cáncer: complejidad bioquímica y supervivencia

De cada 100 pacientes diagnosticados con cáncer de tiroides, 97 logran vivir más de cinco años; pero si ese mismo número de pacientes es diagnosticado con cáncer de páncreas, tan solo cinco lo harán. ¿A qué se debe?

network

Red bioquímica

Siento decirlo, pero nunca escucharemos tal cosa como “se ha encontrado la cura para el cáncer”. El cáncer no es una enfermedad única que se presenta de la misma manera en todos los tejidos y órganos del cuerpo. Cada uno tiene su propia peculiaridad y su forma de tratamiento.

Esto se debe a que cada una de nuestras células engloba una intrincada red de reacciones bioquímicas coordinadas sumamente compleja y estructurada, que se diferencia de las demás dependiendo de los genes que se encuentren encendidos o apagados, agrupándose con otras similares a ella para formar los tejidos que constituyen cada órgano de nuestro cuerpo.

Considerando esto, podemos decir que el comportamiento de las células cancerosas está gobernada y coordinada por una red de señalización bioquímica, que traduce las señales externas —hormonas, factores de crecimiento o estrés fisiológico— en respuestas bioquímicas apropiadas, tales como el crecimiento, proliferación, diferenciación o muerte celular, que conducen al desarrollo de tumores y su diseminación hacia tejidos sanos (metástasis).

Entonces, el cáncer debe ser estudiado como un sistema, donde el producto de expresión de un simple gen mutado, por ejemplo: un factor de transcripción (también conocido como interruptor genético), puede afectar distintas redes bioquímicas, pudiendo desencadenar una proliferación celular descontrolada.

Esta complejidad bioquímica y metabólica limita nuestro entendimiento sobre la enfermedad. Desconocemos por qué ciertos virus pueden desencadenar el desarrollo de un cáncer, o cuál es el mecanismo de acción de ciertos agentes terapéuticos o —volviendo a la pregunta original de este post— por qué la probabilidad de supervivencia de un paciente depende del tipo de cáncer que le han diagnosticado.

Un grupo de investigadores liderados por el Dr. Jack Tuszynski del Departamento de Oncología de la Universidad de Alberta (Canadá), ha estudiado las redes bioquímicas de 14 tipos de cáncer encontrando una relación inversa entre su grado de complejidad y la probabilidad de supervivencia a 5 años. Los resultados fueron publicados en PNAS.

Complejidad del sistema

Las rutas bioquímicas pueden ser representadas como una red de libre escala. Esto quiere decir que cada proteína (nodo) interactúa con otra (conexión). Sin embargo, hay proteínas que interactúan con muchas otras a la vez (un nodo con muchas conexiones), así como también hay muchas proteínas que interactúan con una sola (muchas conexiones que llegan a un solo nodo). Debido a esto, las redes bioquímicas están al borde del caos, digamos que en un estado dinámico metaestable, donde una pequeña perturbación en el sistema —por ejemplo, la mutación de una proteína— podría desencadenar la transición hacia otro estado diferente (proliferación descontrolada) o hacia el colapso del sistema (inactivación de protectores celulares).

Tuszynski y su equipo estudiaron las redes bioquímicas de 14 tipos de cáncer obtenida de la Enciclopedia de Genes y Genomas de la Universidad de Kioto (KEGG) y le calcularon el grado de entropía, una medida que representa la complejidad y heterogeneidad de la red (una red será más compleja cuanto más nodos y conexiones tiene). Además, colectaron las estadísticas de la probabilidad de supervivencia a 5 años de pacientes con cualquiera de los 14 tipos de cáncer descritos en KEGG obtenidos de la base de datos del National Cancer Institute.

Al comparar ambos datos, los investigadores encontraron una clara correlación inversa entre el grado de entropía de la red bioquímica del cáncer con la probabilidad de supervivencia a 5 años. En otras palabras, los pacientes tenían menores probabilidades de sobrevivir si las redes bioquímicas y metabólicas eran más complejas.

cancer_survival
Tabla que muestra la probabilidad de supervivencia a 5 años, el grado de complejidad del cáncer, el número de nodos y conexiones, y los tres principales componentes de la red bioquímica.

Aunque, como pueden ver en la tabla, hubo una excepción a la regla. El cáncer de próstata mostró el mayor grado de complejidad (2.40), no obstante fue el que mayor probabilidad de supervivencia tuvo (99.4%). Según los investigadores, esto se debe a que ese tipo de cáncer es el más diferenciado y localizado de todos, además presenta una tasa de crecimiento muy baja, no se vasculariza y es morfológicamente distinto, por lo tanto, presenta un comportamiento distinto a los demás tipos de cáncer.

Al excluir al cáncer de próstata del análisis, se obtuvo una correlación entre estos dos factores de R2=0.7, el cual es un valor alto a pesar que muchas de las rutas bioquímicas de los diferentes tipos de cáncer aún podrían estar incompletas.

Este estudio además ha permitido identificar las proteínas claves en cada ruta bioquímica, los cuales podrían ser blancos para el desarrollo de nuevos agentes terapéuticos específicos para cada tipo de cáncer. Sin embargo, aún no podemos predecir lo que ocurrirá con el sistema si una de estas proteínas es inactivada. El desarrollo de nuevos modelos computacionales, sin dudas, ayudará a agilizar este proceso.



Referencia:

ResearchBlogging.orgBreitkreutz, D., Hlatky, L., Rietman, E., & Tuszynski, J. (2012). Molecular signaling network complexity is correlated with cancer patient survivability Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1201416109

21 mayo, 2012

,

Cuando la luna devora al sol…

Ayer por la tarde, el este asiático y el oeste de los Estados Unidos, disfrutaron de los eventos  más espectaculares que la naturaleza nos puede brindar: un eclipse anular de sol. Aquí les presento algunas de las mejores imágenes que encontré navegando por ahí…

eclipse7

Vía | Universe Today.

eclipse

Vía | @MikeTheiss

eclipse2

Vía | @wikkit

eclipse3

Vía | ©Ben Cooper a través de @CuantaCiencia 

Cory Poole tomó 700 fotos a través de su telescopio con un filtro para detectar los átomos de hidrógeno exitados y así tener una imagen espectacular de la cromósfera del sol.

Vía | Scientific American.

eclipse4

El eclipse desde el espacio. Vía | Universe Today.

eclipse5

Vía | @MikeKalush

eclipse6

Vía | Flickr @Bill_D

15 mayo, 2012

,

Reprogramando células para curar el corazón

Científicos transforman fibroblastos en cardiomiocitos usando interruptores genéticos.


cardiomiocitos1

Nuestro corazón está formado por dos tipos de células: los cardiomiocitos (30%) que forman el tejido muscular que permite el bombeo de sangre por todo el cuerpo, y los fibroblastos cardiacos (70%) que forman la matriz estructural que sostiene y da forma al corazón. Cuando una persona sufre un infarto, muchos cardiomiocitos mueren y los fibroblastos producen colágeno y otras sustancias de la matriz extracelular provocando una fibrosis que afecta la función cardiaca.

Investigadores de la Universidad de Texas han logrado regenerar los cardiomiociotos a partir del fibroblasto cardiaco en ratones vivos usando una combinación de cuatro factores de transcripción: GATA4, HAND2, MEF2c y TBX5 (GHMT)…


Imagen | ©Nature. Song et al. doi:10.1038/nature11139 (2012).