20 enero, 2014

Un genoma picante

Ayer se publicó un artículo en Nature Genetics que podría resultar interesante para los que amamos las comidas picantes. 

Un grupo internacional de investigadores, principalmente surcoreanos, acaban de hacer público la secuencia del genoma del chile picante (Capsicum annuum). Esta especie se originó y domesticó en Mesoamérica y actualmente se cultiva en casi todo el mundo. Es pariente cercano del C. baccatum (ají amarillo y mirasol) y el C. pubescens (rocoto), los cuales son originarios del Perú, y forman parte de la familia de las Solanáceas, junto a la papa y el tomate. 

Los chiles o ajíes se caracterizan por la gran variedad de colores que presentan, los cuales van desde el amarillo pálido, pasando por el anaranjado y terminando en el rojo intenso y morado. Esto se debe principalmente a la acción de dos carotenoides: la capsantina y la capsorrubina, que son aprovechados como pigmentos naturales dentro de la industria alimentaria y cosmética. Por otro lado, cuentan con un grupo de alcaloides con propiedades antifúngicas, antibacterianas y anticancerígenas llamadas capsaicinoides, que se producen en la parte vascular del fruto (la placenta o comúnmente conocida como "las venas" del ají) y que también son responsables de la sensación picante que dejan en la boca. Se han aislado al menos 22 de estos compuestos, siendo la capsaicina la más importante de todas.

Capsicum annuum. Fuente: WikipediaCapsicum annuum. Fuente: Wikipedia.

Los investigadores secuenciaron el genoma de dos variedades cultivadas de C. annuum (chile criollo de Morelo CM334) y de un pariente silvestre llamado C. chinensis. ¿Por qué escogieron la variedad CM334? Pues porque presenta un gran resistencia a distintos patógenos y enfermedades, especialmente la causada por Phytophthora capsici, y actualmente es usado en diferentes programas de mejoramiento del cultivo.

C. annuum es diploide. Esto quiere decir que presenta dos copias de cada uno de sus 12 cromosomas (n=12). El tamaño de su genoma 3,400 millones de pares de base (3,4 Gpb) es similar al nuestro (3,2 Gpb), pero mucho más grande que de la papa (0,84 Gpb) y del tomate (0,9 Gpb). Por otro lado, el 75% del genoma de C. annuum corresponde a secuencias repetidas (retrotransposones) que fueron incorporadas después su divergencia con el tomate hace unos 19 millones de años.

Se estima que C. annuum posee al menos 34.900 genes, un número similar al que poseen el tomate y la papa. Comparte muchos genes de maduración con el tomate, pero existe una gran diferencia entre sus frutos: los tomates son climatéricos, esto quiere decir que su maduración está regulada por una molécula muy simple llamada etileno, mientras que los chiles no son climatéricos.

La ventaja de los frutos climatéricos es que pueden ser cosechados aún verdes ya que seguirán madurando fuera de la planta, incluso podemos acelerar y hacer más homogéneo este proceso aplicando el gas etileno directamente. Esto facilita su transporte y almacenamiento. Un análisis comparativo entre los genes que se expresan durante la maduración de estos dos cultivos reveló que los chiles expresan en bajos niveles los genes responsables de la producción de etileno, especialmente el gen CNR. Asimismo, el gen de la poligalacturonasa (responsable del ablandamiento del tomate) se encuentra subexpresado e incompleto. Todo esto suma a que sus frutos sean tan diferentes. Por otro lado, los niveles de expresión de los genes responsables de la producción de Vitamina C son mayores en el chile que en el tomate.

La publicación del genoma del C. annuum sevirá como una plataforma para mejorar las características nutricionales y aprovechar del valor farmacológico de este importante cultivo que solo en el año 2011 movió más de 14.400 millones de dólares. Asimismo, contaremos con un genoma de referencia para el estudio y mejoramiento de nuestras especies nativas de ajíes aprovechando de la gran diversidad genética que tenemos.



Referencia: ResearchBlogging.orgSeungill Kim, et al (2014). Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species Nature Genetics DOI: 10.1038/ng.2877

15 enero, 2014

, ,

Un BLAST para enzimas

Las enzimas son las moléculas responsables de catalizar las reacciones químicas que se llevan a cabo en todos los seres vivos. Están formadas por largas cadenas de aminoácidos, en secuencias específicas determinadas por los genes, que adquieren estructuras tridimensionales complejas. Gracias a ellas podemos digerir los alimentos, desintoxicar las células, degradar los medicamentos y sintetizar nuevas proteínas, ADN, neurotransmisores y hormonas. En fin, debemos nuestro funcionamiento a ellas.

Para la primera mitad del siglo XX ya se habían identificado y caracterizado cientos de enzimas en distintos laboratorios del mundo, por lo que era necesario desarrollar algún mecanismo para agruparlas de acuerdo a sus propiedades químicas. Fue así que en la década de 1960, la Comisión Conjunta sobre Nomenclatura Bioquímica (JCBN) adoptó un sistema universal de clasificación enzimática que consistía de cuatro números: El primero corresponde a su función catalítica o mecanismo de acción (clase), el segundo al tipo de enlace que modifica (subclase), el tercero a la naturaleza del sustrato (sub-subclase) y el cuarto número indica específicamente el sustrato o es el número correlativo establecido por la JCBN. Por ejemplo, la tripsina (EC 3.4.21.4), es una hidrolasa (clase 3) que rompe con agua un enlace peptídico (subclase 4) usando para ello un residuo de serina en su centro activo (sub-subclase 21) y es la cuarta agregada a la lista de enzimas degradadoras de proteínas (4).

Ahora, gracias al desarrollo de analizadores químicos sofisticados y equipos de secuenciamiento de última generación, descubrimos nuevas enzimas con potenciales usos farmacéuticos, bioquímicos e industriales. Y no sólo eso, también la computación y la informática están poniendo de su parte a través del desarrollo de algoritmos y programas que permiten predecir, modelar y modificar las estructuras de las enzimas para obtener nuevas funciones. Por ello se requiere de un mecanismo rápido para comparar la función de las enzimas que se descubren y caracterizan día a día.

Es así que un grupo de investigadores del Laboratorio Europeo de Biología Molecular (EMBL) han desarrollado una herramienta bioinformática llamada EC-BLAST que permite mapear y comparar cualquier reacción enzimática en función al cambio de los enlaces químicos de los sustratos, el centro activo (lugar de la enzima donde se lleva a cabo la reacción) y la estructura de las moléculas participantes de la reacción enzimática. Gracias a unos algoritmos informáticos, cada uno de estos parámetros genera una "huella dactilar" que es comparada con las que están almacenadas en la base de datos del EMBL, para poder determinar la función de la enzima o su clasificación dentro del sistema universal.

EC-BLAST
Modo de funcionamiento del EC-BLAST

 

Para ver si el EC-BLAST funcionaba adecuadamente, los investigadores lo probaron utilizando las 6000 reacciones enzimáticas juntó a sus respectivos sustratos registrados en la base de datos de la Enciclopedia de Genes y Genomas de Kioto (KEGG). Los resultados fueron muy buenos. Las enzimas se agruparon de acuerdo a las clases y subclases a las que corresponden según su nomenclatura. Además permitió identificar algunos errores en la clasificación de ciertas enzimas, incluso se observó que algunas de ellas podían cumplir más de una función específica y podían pertenecer a diferentes clases (promiscuidad enzimática).

Resumiendo, el EC-BLAST ha demostrado ser una potente herramienta para comparar la similaridad química de las reacciones enzimáticas. Además es útil a la hora de asignar una clasificación a las enzimas recién descubiertas y podría ayudar a identificar nuevas funciones en las enzimas ya conocidas, que podría ser aprovechada por la industria biotecnológica.


Referencia:

ResearchBlogging.orgAsad, S, Martinez, S, Furnham, N, Holliday, GL, & Thornton, JM (2014). EC-BLAST: a tool to automatically search and compare enzyme reactions Nature Methods DOI: 10.1038/nmeth.2803

10 enero, 2014

Nueva estrategia para controlar áfidos mediante ingeniería genética

El aumento de cultivos de plantas transgénicas resistentes a insectos ha reducido el uso de agroquímicos destinado al control de plagas. Sin embargo, este efecto, que sin dudas es favorable para el ambientes y salud de los agricultores y consumidores, ha generado un hecho inesperado: el aumento de plagas secundarias como los áfidos, los cuales no son afectados por las toxinas Bt expresadas por las plantas transgénicas. Si bien los áfidos no se comen las hojas o los frutos como lo hacen las orugas o las langostas, son responsables de transmitir más del 50% de todos los virus que causan enfermedades en las plantas, convirtiéndose en un serio problema para la agricultura. Recientemente, una novedosa estrategia para controlar los áfidos ha sido desarrollada por investigadores de la Iowa State University. Si quieres saber más lee mi artículo publicado hoy en Naukas.

Afidicid
Afidicid(R). El único veneno para áfidos inyectable en el mundo.

Vía | Naukas.

24 diciembre, 2013

Es una araña, pero ¿cuál?

Hace algunos meses comentamos sobre una extraña estructura de dos centímetros de diámetro que aparecía en los troncos de algunos árboles en la Reserva Nacional de Tambopata. Troy Alexander, estudiante graduado del Instituto de Tecnología de California y descubridor de la extraña estructura, solicitó ayuda a biólogos, aracnólogos y entomólogos de todo el mundo para identificar al organismo responsable de su construcción, pero nadie daba con una respuesta definitiva. Sin dudas, era algo nuevo para la ciencia.

Imagen: Perunature.com

La semana pasada, Nadia Drake, reportera científica de WiredScience, viajó a la selva peruana y acompañó a un equipo de investigadores liderados por el entomólogo Phil Torres para encontrar al arquitecto de esta estructura de seda antes que Giorgio A. Tsoukalos salga diciendo que fueron los extraterrestres en The History Channel.

Esta expedición dio como resultado fotos y videos de pequeñas arañas emergiendo huevos ocultos en la base de las misteriosas torres.

Lo que parecía muy raro era que las arañas dejaran sus huevos a su suerte y que sólo haya un huevo dentro de cada estructura. Por lo general, las arañas ponen cientos de huevecillos dentro de un saco y siempre cuidan de ellos ya sea en un nido o llevándolos consigo a donde vayan. 

Por otro lado, según reporta Nadia, estas estructuras ya habían sido observadas hace una década en la Guyana Francesa por el biólogo francés Julien Grangier. Asimismo, en enero de este año, el fotógrafo Brian Lee lo observó en la selva ecuatoriana. También se dice que ha sido observado en Brasil, Estados Unidos y Bélgica aunque aún no hay evidencias fotográficas de ellas. Esto indicaría que la distribución de esta especie de araña es más amplia de lo que se pensaba, principalmente en el neotrópico.

No obstante, aún no se ha podido identificar qué especie es. "No hay forma que una foto me de la información que necesito para una acertada identificación", comenta Norm Platnick, curador emérito de arácnidos del Museo Americano de Historia Natural. Lo cierto es que identificar arañas es una tarea muy complicada, depende de muchos factores: la disposición de los ojos (que nos puede dar un indicio de qué familia es), la forma de colmillos y, principamente, estructura del órgano reproductor. Para ello se requiere estudiar un especímen adulto y por ahora sólo se tienen fotos y videos de recién nacidos.

En función a la disposición de los ojos, los expertos dicen que podría tratarse de un miebro de las familias Uloboridae, Thomisidae o Salticidae. Para otros se trataría de una especie de Orbiculariae. Otros se atreven a decir que la estructura de las torres de seda parecen capullos de arañas de la familia Mimetidae o Theridiidae. En otras palabras, nadie tiene idea de que tipo de araña es, posiblemente sea una especie nueva para la ciencia, aunque otros piensan que es una araña conocida haciendo algo que no ha sido reportado antes.

Los investigadores encontraron algunos ácaros atrapados en los "cercos" o junto a las torres. La hipótesis que plantean es que esta estructura sirve como trampa de ácaros que después sirven de alimento para las arañas recién nacidas. También obsevaron que algunas hormigas evitaban pasar junto a estas estructuras, lo que indicaría que su función es proteger el huevo que se encuentra dentro ya que a la madre prefiere salir de fiesta con sus amigas que cuidar de su huevecillo.

De seguro el próximo año ya sabremos de qué especie se trata.

Vía WiredScience.

05 diciembre, 2013

,

Aunque no lo creas, es seguro ingerir Ácido Desoxirribonucleico

Extra

— Ayer leí en el Extra [diario sensacionalista del Perú] que ingerimos un gramo de Ácido Desoxirribonucleico por día sin si quiera saberlo.

— Incluso más, dependiendo de tu dieta.

— ¡Diablos! Sin dudas vivimos en un mundo en el cual ya ni si quiera podemos comer sano… y siempre las empresas ocultándonos los aditivos que le ponen a los alimentos.

— Pero no te preocupes que ingerir Ácido Desoxirribonucleico no hace daño.

— ¿En serio?

— Pues, sí.

— Pero, ¡si es un ácido!.

— Sí, pero es un ácido débil, como el de los limones (ácido cítrico) o del yogurt (ácido láctico). Nada que ver con los ácidos fuertes como el sulfúrico (H2SO4) o el clorhídrico (HCl).

— Y ¿cómo lo sabes?

— Pues en base al pKa. El pKa es un valor que indica, de forma relativa, la fuerza de un ácido. Cuanto menor es ese valor, más ácido es el compuesto. La acidez del Ácido Desoxirribonucleico se debe al grupo fosfato, cuyo valor pKa es cercano a 1, mientras que en el ácido cítrico es de 3,08 y en el ácido láctico es de 3,86. Por otro lado, los ácidos fuertes como el H2SO4 o el HCl tienen valores de pKa de –3 y –8, respectivamente.

— ¿Y qué pasa con eso de “nucleico”? La energía nuclear me da mucho miedo, por eso de la radiación y el cáncer que provoca. Mira no más lo que pasó en Chernóbil y Fukushima. Y tan solo pensar que lo que como ha pasado por esas máquinas de resonancia magnética nuclear, no me da buena espina.

— Lo de nuclear se refiere a que fue descubierto por primera vez en el núcleo de las células. Todos los seres vivos tienen esta sustancia, incluyendo a los microorganismos como las bacterias y los virus que no tienen núcleo.

— Uhm. Pero no me vas a decir que eso de desixo… desoxi…rriba… pues esa cosa impronunciable es saludable. Ya me dijo mi doctor que cuanto más difícil de pronunciar sea el nombre de una sustancia, menos natural y más dañino para a salud será.

— En realidad la ribosa es un azúcar muy parecido a la glucosa y fructosa que usamos diariamente para endulzar nuestro café con la diferencia que tiene 5 átomos de carbono en vez de 6. Lo de “desoxi” quiere decir que perdió un átomo de oxigeno.

— Pero, aún así, no estoy de acuerdo a que le pongan tantos aditivos a los alimentos, así sea de origen natural.

— ¡Que no es un aditivo! El Ácido Desoxirribonucleico o ADN…

— Espera, ¿dijiste ADN? Por qué no empezaste por ahí. Si sé qué es el ADN. Es la famosa “molécula de la vida” que da las instrucciones para formar un ser vivo. Eso que usaron los científicos para clonar a la oveja.

— ¡Claro! Algo así. Ya vez que no le ponen ADN a las comidas porque estas ya la traen incorporadas. Cada ensalada que comes tiene millones de moléculas de ADN. Cada plato de cebiche o lomo saltado tiene varios miligramos de ADN que ingresan a tu organismo. El ADN forma parte de todos los seres vivos porque conforma los genes.

— ¿Eso quiere decir que comemos millones de genes cada día?

— Así es.

— ¿Y esos genes pueden entrar a nuestras células y convertirlas en otros organismos?

— Una pregunta interesante, pero no ocurre eso. El ADN es degradado en nuestro tracto digestivo gracias a los compuestos químicos que segrega, entre ellos, una enzima llamada ADNasa producida por el páncreas que rompe el ADN en bloques muy pequeños que ya no tienen función alguna y sólo sirven como materia prima para nuestras células.

— Ah ya. ¿Y qué pasa con los transgénicos? Dice que tienen genes de otras especies que los usan para hacerlos brillar en la oscuridad.

— Como te mencioné, el ADN tiene la misma composición química venga de la especie que venga. No hay diferencia si te comes un gen de maíz introducido en el arroz o un gen del arroz introducido en el maíz.

— Gracias por tu tiempo y paciencia para aclararme este tema. Mañana te invito un pollito a la brasa pero, eso sí, sin cloruro de sodio que no le tengo confianza a ese químico.


Esta historia fue inspirada por este artículo: Is DNA eating safe?

03 diciembre, 2013

De los ensayos clínicos a las publicaciones científicas

Todos los medicamentos y agentes terapéuticos disponibles en el mercado han pasado por un riguroso proceso de evaluación experimental para determinar su eficacia --tratando alguna infección o enfermedad-- y los posibles efectos secundarios. Este proceso es conocido como un ensayo clínico y consta de cuatro fases [más información aquí].

Desde el 2007, la FDA (Administración de Medicamentos y Alimentos de los Estados Unidos) estableció que todos los ensayos clínicos realizados en EEUU deben ser hechos públicos a través del repositorio clinicaltrials.gov en un plazo menor a un año de haber concluido dicho estudio, incluso si aún no han sido publicados en una revista científica. La finalidad de esta iniciativa era reducir el tiempo y dinero que se pierde tratando de analizar compuestos que ya han sido probados y rechazados anteriormente, pero que nadie se entera porque muchas veces los resultados negativos no son publicados o tardan mucho en hacerlo. Por otro lado, también se fomenta la transparencia de los ensayos clínicos y se facilita el acceso a los datos para posteriores análisis.

Ahora, un grupo de investigadores franceses comparó el tiempo de publicación y la integridad de los resultados de los ensayos clínicos registrados en ClinicalTrials.gov y en las revistas médicas. Los resultados fueron publicados el 3 de diciembre en PLOS Medicine.

Demoras y falta de integridad

En marzo del 2012, Carolina Rivero y sus colaboradores entraron a ClinicalTrials.gov y seleccionaron 600 ensayos clínicos con las fases III y IV concluidas y buscaron en el PubMed sus respectivas publicaciones científicas. Lo que encontraron fue que menos del 50% de los ensayos clínicos habían sido publicados en una revista médica. Por otro lado, el tiempo promedio transcurrido entre el desarrollo del estudio y la publicación de los primeros resultados en el repositorio o en la revista era de 19 y 21 meses, respectivamente.

En cuanto a la integridad del estudio, los investigadores consideraron tres factores comparativos: el flujo de los participantes (número de participantes, métodos de selección, agrupamientos, abandonos, etc.), los resultados de eficacia (mediciones del principal objetivo de análisis que demuestren que la sustancia de estudio funciona o no) y los efectos adversos y adversos graves durante el ensayo clínico. Los investigadores encontraron que los resultados publicados en ClinicalTrials.gov fueron más completos que los publicados en las revistas médicas en las siguientes proporciones: flujo de participantes (64% Vs 48%), resultados de eficacia (79% Vs 69%), eventos adversos (73% Vs 45%) y eventos adversos graves (99% Vs 63%). Estos resultados indican que la información más completa se encuentra en ClinicalTrials.gov.

Muchas veces los científicos tienden a publicar solo los resultados "más favorables" de un determinado estudio, por lo que sería muy importante para los revisores y editores de las revistas médicas que también consideren los datos que aparecen en los registros para que así puedan identificar las inconsistencias y los efectos significativos inexistentes.


Referencia:

ResearchBlogging.orgRivero, C., & et al. (2013). Timing and Completeness of Trial Results Posted at ClinicalTrials.gov and Published in Journals PLOS Medicine DOI: 10.1371/journal.pmed.1001566

 

02 diciembre, 2013

,

Espectacular video del cometa ISON

Hace unos tres millones de años, una roca exiliada en los confines del sistema solar, en una región conocida como Nube de Oort, empezó su largo viaje hacia el Sol. A medida que la roca se acercaba a nuestra estrella, el hielo que contenía en su interior comenzó a sublimarse (paso directo del estado sólido a gaseoso) dejando una enorme estela brillante tras de sí.

En setiembre del 2012, dos astrónomos rusos (bueno, uno bielorruso) del International Scientific Optical Network (ISON) lo descubrieron y lo nombraron C/2012 S1. El cometa rápidamente se hizo famoso debido al tamaño (2 Km de diámetro) e integridad de su núcleo, lo que presagiaba que sería el más brillante de los últimos años, tanto así que lo nombraron el "cometa del siglo".

El 28 de noviembre pasado, el cometa ISON se acercó a un poco más de un millón de kilómetros de la superficie del Sol, una distancia tan corta que lo más probable era que se evaporara y desintegrara debido al enorme calor y gravedad de nuestro astro rey. Su viaje suicida fue seguido muy de cerca por dos observatorios espaciales solares: SOHO y STEREO. Estos telescopios cuentan con coronógrafos que permiten bloquear el inmenso brillo del sol para estudiar su atmósfera y objetos menos brillantes alrededor de él (es como crear un eclipse total constante).

Gracias a estos equipos se pudo grabar el siguiente video:

Los científicos siguen estudiando si quedó algo del cometa ISON. En el video se aprecia que hay restos del cometa que sobreviven y rodean la superficie del Sol, lo que no se sabe es si sólo son escombros o si ha sobrevivido alguna parte íntegra del núcleo de roca y hielo. Sólo queda esperar las imágenes que tomará próximamente el telescopio espacial Hubble.