‘Selfies’ de diferentes tipos de fagos. Fuente: Atamer, Z. et al (2013). |
Los fagos son tan abundantes que, si hiciéramos una fila con ellos, esta mediría 100 millones de años luz. La fila de fagos sería suficiente como para cubrir la distancia entre nuestro planeta y la galaxia Andrómeda (a 2.5 millones de años luz), unas 20 veces ida y vuelta.
Los fagos actúan de forma similar a los virus humanos. Primero, reconocen específicamente a la bacteria que van a infectar. Se posan sobre su superficie tal como lo haría una sonda espacial aterrizando en un planeta. Inyectan su material genético (ADN o ARN) dentro de la bacteria, para infiltrarse en su genoma (profago). Puede permanecer como polizonte por muchas generaciones, diseminándose silenciosamente entre todos los descendientes de las bacterias infectadas. Una condición de estrés despierta al profago de su letargo y convierte a la bacteria en una fábrica de fagos. Finalmente, el hospedero no soporta la presión y explota liberando millones de fagos quienes buscarán a nuevas víctimas para reiniciar su ciclo de vida.
¿Se dieron cuenta? Podríamos usar a los fagos para infectar y exterminar bacterias que nos provocan graves enfermedades, como la tuberculosis (TBC). Esta enfermedad es causada por la bacteria Mycobacterium tuberculosis y en el Perú es un grave problema de salud pública debido al alto número de casos de TBC multidrogo-resistente (TBC-MDR) y TBC extremadamente drogo-resistente (TBC-XDR).
Mycobacterium tuberculosis. Fuente: CropWatch. |
La TBC se cura mediante un largo tratamiento con cuatro antibióticos comunes. Hay casos en los que estos antibióticos no funcionan debido a que el paciente no cumplió con el tratamiento (se sintió mejor y dejó de usarlos) o la dosis no fue la adecuada. Esto provoca que las bacterias que sobrevivieron al ataque químico inadecuado se reproduzcan y generen una TBC resistente a estos antibióticos. Esta es la TBC-MDR.
Para tratar la TBC-MDR se requiere de otros antibióticos más potentes y costosos, con peores efectos secundarios y con un tratamiento más prolongado. Hay casos en que las bacterias sobreviven a este ataque más potente. Prácticamente, se vuelven invencibles a nuestras más poderosas armas químicas. Aquí estamos frente a la TBC-XDR. En este caso, sólo una tercera parte de los pacientes sobrevive, donde el único tratamiento es extraer la porción del pulmón afectado.
El uso de fagos para el control de infecciones no es algo nuevo. A inicios del siglo XX ya eran utilizados para curar heridas y disenterías. En la década de 1930, el Instituto Pasteur y otras empresas farmacéuticas producían preparados de fagos para el tratamiento de distintas enfermedades. Pero fue el descubrimiento y comercialización de los primeros antibióticos como la penicilina en 1941 que la terapia con fagos fue dejada de lado.
La aparición de nuevas bacterias infecciosas resistentes a nuestros mejores antibióticos ha provocado que, en la actualidad, el uso de los fagos esté tomando importancia. Además, los grandes avances en la ingeniería genética permitirían modificarlos para volverlos más efectivos.
Para el caso de la TBC, lo primero es encontrar fagos que infecten específicamente a este bacilo. Se han identificado miles de micobacteriófagos, pero muy pocos son específicos de M. tuberculosis. Además estos fagos no son buenos asesinos.
Otra dificultad es que las bacterias se encuentran "protegidas" por las propias células de nuestro organismo dificultando el acceso del fago. Los macrófagos —un tipo de células de nuestro sistema inmune— las devoran pero no pueden digerirlas. Las bacterias permanecen vivas en su interior y empiezan a multiplicarse. Más células inmunes van a ayudar pero no pueden eliminar la infección, por el contrario, se aglutinan formando una masa esférica de células llamado granuloma.
Sin embargo, los fagos podrían usarse como un profiláctico (para prevenir infecciones). Si a una persona le diagnostican TBC, sus familiares y compañeros de trabajo pueden aspirar fagos específicos de M. tuberculosis. De esta manera, cada vez que las bacterias ingresen a los pulmones de las personas sanas, haya un contingente de fagos que las eliminen antes de que inicien la infección.
El uso de fagos para el control de infecciones no es algo nuevo. A inicios del siglo XX ya eran utilizados para curar heridas y disenterías. En la década de 1930, el Instituto Pasteur y otras empresas farmacéuticas producían preparados de fagos para el tratamiento de distintas enfermedades. Pero fue el descubrimiento y comercialización de los primeros antibióticos como la penicilina en 1941 que la terapia con fagos fue dejada de lado.
La aparición de nuevas bacterias infecciosas resistentes a nuestros mejores antibióticos ha provocado que, en la actualidad, el uso de los fagos esté tomando importancia. Además, los grandes avances en la ingeniería genética permitirían modificarlos para volverlos más efectivos.
Para el caso de la TBC, lo primero es encontrar fagos que infecten específicamente a este bacilo. Se han identificado miles de micobacteriófagos, pero muy pocos son específicos de M. tuberculosis. Además estos fagos no son buenos asesinos.
Otra dificultad es que las bacterias se encuentran "protegidas" por las propias células de nuestro organismo dificultando el acceso del fago. Los macrófagos —un tipo de células de nuestro sistema inmune— las devoran pero no pueden digerirlas. Las bacterias permanecen vivas en su interior y empiezan a multiplicarse. Más células inmunes van a ayudar pero no pueden eliminar la infección, por el contrario, se aglutinan formando una masa esférica de células llamado granuloma.
Sin embargo, los fagos podrían usarse como un profiláctico (para prevenir infecciones). Si a una persona le diagnostican TBC, sus familiares y compañeros de trabajo pueden aspirar fagos específicos de M. tuberculosis. De esta manera, cada vez que las bacterias ingresen a los pulmones de las personas sanas, haya un contingente de fagos que las eliminen antes de que inicien la infección.
Referencia:
Hatfull GF (2014) Mycobacteriophages: Windows into Tuberculosis. PLoS Pathog 10(3): e1003953. doi: 10.1371/journal.ppat.1003953
0 comentarios:
Publicar un comentario
Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.