05 octubre, 2011

, , , , ,

¿Por qué las defensas de las legumbres no afectan a sus bacterias simbiontes?

La gran mayoría de las bacterias, por lo general, provocan la activación de una respuesta química de defensa cuando ingresan a un determinado organismo. Algunas de ellas logran superar esta barrera y se establecen dentro de las células generando prolongadas infecciones que, en ciertos casos, pueden llegar a ser beneficiosas —simbiosis. Sin embargo, el mecanismo que le permite a las bacterias simbióticas permanecer dentro del organismo hospedero no está muy bien entendido. Un grupo internacional de investigadores liderados por el Dr. Andreas Haag de la Universidad de Aberdeen han revelado el mecanismo protector de Sinorhizobium —un fijador de nitrógeno importante en las plantas— contra los péptidos antimicrobianos de las legumbres. Los resultados aparecen publicados en PLoS Biology.

AlfalfaNodules

Hay una delgada línea que separa una simbiosis bacteriana de una infección crónica, basta un pequeño cambio en un gen o la desregulación de una vía metabólica para que una bacteria beneficiosa se convierta en una perjudicial. Sinorhizobium meliloti es una alfa-proteobacteria que induce la formación de nódulos en el Medicago truncatula —una leguminosa modelo usada en muchos estudios científicos— para luego infectarlas vía endocitosis. Una vez internalizada la bacteria, se diferencia en una estructura simbiótica, conocida también como bacteroides, encargada de fijar el nitrógeno que es aprovechado por la planta mientras que ella le provee a la bacteria de los preciados nutrientes para su supervivencia.

Hasta aquí todo parece un proceso normal. Sin embargo, para que las bacterias de vida libre se diferencien en un nódulo fijador de nitrógeno, se requiere de la presencia de unas moléculas conocidas como péptidos NCR (péptidos ricos en cisteína específicos del nódulo). Estudios in vitro demostraron que los péptidos NCR tienen una actividad antimicrobiana con estructura y función similar a las defensinas de los animales, las cuales activan la inmunidad innata. Entonces, la bacteria debe poseer algún tipo de mecanismo que le permita soportar el efecto perjudicial de los péptidos NCR.

En el año 1993, Glazebrook y sus colaboradores identificaron a la proteína BacA como la responsable de la formación de los bacteroides fijadores de nitrógeno. Los S. meliloti que tenían mutado el gen BacA podían infectar con normalidad las células de la raíz de las legumbres pero eran incapaces de diferenciarse en bacteroides. Estos datos sugieren que la proteína BacA juega un rol importante en la respuesta de las bacterias simbióticas hacia los péptidos NCR.

Para corroborar esta hipótesis, el equipo de investigadores liderados por el microbiólogo Andreas Haag de la Universidad de Aberdeen desarrollaron un par de ingeniosos experimentos. Primero sintetizaron químicamente el péptido NCR de la alfalfa y luego lo administraron a diferentes cultivos de R. meliloti silvestres y mutantes para el gen BacA. Las bacterias silvestres desarrollaron unas colonias más grandes mientras que las mutantes fueron más sensibles al efecto antimicrobiano del péptido NCR —sus colonias eran más reducidas— porque la integridad de su membrana celular se veía afectada. Sin embargo, las bacterias mutantes recuperaban su viabilidad cuando se les insertaba el gen BacA a través de un plásmido. Estos primeros resultados sugieren que BacA protege a S. meliloti del efecto nocivo de los péptidos NCR.

Cuando hicieron los análisis en las plantas, Haag y sus colaboradores observaron que tanto la bacteria silvestre como la mutante inducían la expresión y localización del péptido NCR en los nódulos de las células. La diferencia radicaba en que las bacterias silvestres tenían la capacidad de secretar el péptido NCR fuera de los nódulos, mientras que las mutantes no, y éste se acumulaba dentro. Además, al usar dos moléculas fluorescentes, una verde para evidenciar a las bacterias vivas y una roja para evidenciar a las bacterias muertas a causa de la pérdida de sus membranas celulares, los investigadores pudieron observar que la bacteria mutante era asesinada de manera muy rápida, corroborándose así los resultados obtenidos en el experimento anterior (in vitro).

journal.pbio.1001164.g001

Finalmente, hicieron un último experimento para dar mayor contundencia a sus resultados. Esta vez Haag y equipo desarrollaron una legumbre mutante incapaz de transportar el péptido NCR a los nódulos. El primer efecto observado fue que tanto las bacterias silvestres como las mutantes no pudieron diferenciarse en bacteroides fijadores de nitrógeno, ya que como mencionamos anteriormente, éste péptido es indispensable para dicha transformación. El segundo efecto observado fue que las bacterias mutantes lograron sobrevivir y mantenerse viables por un buen periodo de tiempo, tal como lo hacían las bacterias silvestres. [Todo el trabajo se puede resumir en el siguiente esquema]:

journal.pbio.1001169.g004

Este estudio es importante desde varios puntos. En primer lugar se entendió la estrategia que usan estas bacterias para infectar y cambiar su estilo de vida libre por uno especializado en fijar el nitrógeno del ambiente. En segundo lugar se entendió cómo hacen estas bacterias para no sucumbir ante el mecanismo de defensa de las células de las plantas. Y finalmente, existen genes homólogos a BacA en otras especies de bacterias patógenas como Brucella abortus (causante de abortos espontáneos en vacas) y Micobacterium tuberculosis; así que este trabajo podría ayudar a revelar algunos de los factores involucrados en las infecciones crónicas generadas por estas bacterias y tal vez desarrollar fármacos que inhiban la acción de estos genes homólogos para volverlos susceptibles a la acción de las defensas naturales de las células.


Referencia:

ResearchBlogging.orgHaag, A., Baloban, M., Sani, M., Kerscher, B., Pierre, O., Farkas, A., Longhi, R., Boncompagni, E., Hérouart, D., Dall’Angelo, S., Kondorosi, E., Zanda, M., Mergaert, P., & Ferguson, G. (2011). Protection of Sinorhizobium against Host Cysteine-Rich Antimicrobial Peptides Is Critical for Symbiosis PLoS Biology, 9 (10) DOI: 10.1371/journal.pbio.1001169

0 comentarios:

Publicar un comentario

Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.