Uno de los retos más grandes dentro de las investigaciones biológicas es poder ver las células que conforman los tejidos internos de los animales entre tres dimensiones y con una resolución que hasta ahora sólo era obtenida con animaciones computarizadas. Un grupo de investigadores japoneses han desarrollado una novedosa solución acuosa llamada Scale que permite volver los tejidos en estructuras ópticamente transparentes, sin perder su forma ni función. Además, han usado esta sustancia para estudiar a fondo el cerebro de ratones a una escala subcelular y con una resolución sin precedentes. El artículo fue publicado ayer en Nature Neuroscience.
Una de las cosas más difíciles es observar la disposición estructural y la geometría que adoptan las células en los tejidos que forman órganos como el hígado, los riñones o el cerebro. Una de las formas de obtener imágenes tridimensionales es usando técnicas de tomografía por resonancia magnética, la cual carece de una resolución a nivel celular y subcelular. Otra forma es rebanando (seccionando) un determinado tejido en tajadas sumamente delgadas y observándolas bajo un microscopio electrónico. Si bien esta última técnica permite reconstruir la estructura tridimensional de un tejido, el proceso es sumamente laborioso y costoso —sólo se puede analizar una pequeña porción de un determinado tejido.
El seccionamiento óptico usando proteínas fluorescentes permite acelerar el proceso y reducir los costos. Sin embargo, su poder de penetración está limitado por la dispersión de la luz. Por ejemplo, la microscopia de escaneo láser confocal sólo tiene un poder de penetración de 150um, mientras que la microscopía de excitación de dos fotones puede alcanzar los 800um.
Si nos preguntamos cómo podríamos solucionar el problema de la dispersión de la luz la respuesta más lógica sería incrementando la transparencia de los tejidos, para que la luz pueda penetrar más distancia antes de refractarse. En el mercado existen sustancias que clarifican los tejidos, por ejemplo, el FocusClear® —muy costoso para grandes muestras. También existen otras más caseras como la sucrosa al 60% con PBS o el BABB (una mezcla de alcohol bencílico y benzoato bencílico), la cual es más usada por su facilidad y bajo costo. Sin embargo, estas técnicas pueden interferir y atenuar la fluorescencia o muchas veces no vuelven los tejidos lo suficientemente transparentes como para hacer buenos estudios tridimensionales.
Un grupo de investigadores japoneses liderados por el Dr. Hiroshi Hama desarrollaron una solución llamada Sca/e, la cual está compuesta por urea 4M, glicerol 10% y Triton X-100 0.1%. [Creo que estos insumos están presentes en cualquier laboratorio]. Hama y sus colaboradores probaron el Scale en embriones de ratones y obtuvieron la imagen ubicada al inicio de esta entrada.
Para probar si la fluorescencia era atenuada por la solución de Scale, los investigadores probaron la técnica de clarificación en una línea celular humana (HeLa). Los resultados mostraron que la fluorescencia no era atenuada. Una vez obtenidos estos resultados, probaron la técnica in vivo. Para ello usaron una línea de ratones transgénicos (YFP-H) con la capacidad de expresar la proteína amarilla fluorescente (YFP) en las neuronas. Usando el microscopio de excitación de dos fotones lograron hacer la reconstrucción tridimensional hasta una profundidad de 4mm!
Pero, cuando se marcó fluorescentemente de manera exclusiva un cierto grupo de neuronas, el poder de penetración fue mucho mayor. Hama et al. marcaron los axones de las neuronas del corpus callosum, que es el encargado de comunicar ambos hemisferios del cerebro. Para ello usaron el Microscopio Macro Confocal AZ-C1 de NIkón y lograron obtener imágenes a una profundidad de 35mm.
Con esto queda demostrado los usos potenciales de esta técnica, sobre todo para revelar cómo se ensambla el sistema nervioso y como se forman las conexiones interneuronales —también conocido como el conectoma— en el cerebro. Por ejemplo, Hama y sus colaboradores usaron otra proteína fluorescente, esta vez roja, para estudiar la asociación de las vasos capilares con las células madre neuronales. También se usaron otras técnicas específicas de marcación fluorescente para observar otros arreglos neuronales en el cerebro. Las posibilidades de visualización son muchas.
Los investigadores desarrollaron también otras variantes del Scale, usando diferentes concentraciones de glicerol para reducir la expansión observada en los tejidos sometidos al Scale original. Por otro lado, usando urea más concentrada se lograba reducir el tiempo de clarificación de varias semanas y hasta meses, a tan sólo una semana. Además, la clarificación con Scale es reversible ya que bastaba con un lavado con PBS para restaurar la opacidad original del tejido.
Sin dudas, es un procedimiento sencillo y económico que ayudará a entender más a fondo el desarrollo y función del cerebro en los animales superiores. Además, Scale nos ayudará a ver cómo se organizan las neuronas y cómo interactúan entre ellas en el cerebro, sin la necesidad de seccionarlo. La conectómica ahora tiene un gran aliado.
Referencia:
Hama, H., Kurokawa, H., Kawano, H., Ando, R., Shimogori, T., Noda, H., Fukami, K., Sakaue-Sawano, A., & Miyawaki, A. (2011). Scale: a chemical approach for fluorescence imaging and reconstruction of transparent mouse brain Nature Neuroscience DOI: 10.1038/nn.2928
0 comentarios:
Publicar un comentario
Se respetuoso con tus comentarios y críticas. Cualquier comentario ofensivo será eliminado.